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ON THE THEORY OF BRILLOUIN SCATTERING IN
PIEZOELECTRIC SEMICONDUCTORS WITH ACOUSTIC
PHONON-CONDUCTION ELECTRON INTERACTION

O. Keller

Physics Laboratory
Royal Veterinary and Agricultural University
Copenhagen, Denmark

The theory of nonresonant Brillouin scattering in anisotropic
piezoelectric semiconductors with deformation potential coupling
and piezoelectric coupling between excited systems of acoustic
phonons and conduction electrons is reviewed. The scattering
efficiency is calculated using the appropriate dyadic electromag-
netic Green's function. The depletion of the scattered intensity
arising from a non phase-matched scattering kinematics and from
a spatial exponential decay of the sound amplitude is taken into
account. The contributions to the Brillouin scattering from the
free-carrier~-screened indirect photoelastic effect and from the
free-carrier density modulation are expressed in terms of the
self-consistent electric field. This field is obtained from a Boltz-
mann-equation calculation of the effective ac conductivity tensor.
The acoustic dispersion of the Brillouin-scattering efficiency is
considered, and some possibilities of determining electronic trans-
port properties by means of Brillouin scattering are outlined.

I. INTRODUCTION

The purpose of this review is to present the basic concepts
of the semiclassical theory of first-order Brillouin scattering in
piezoelectric semiconductors with acoustic phonon-conduction

electron interaction[ ! ]
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By using the dyadic electromagnectic Green's function appro-
priate to scattering in optically anisotropic crystals a formal ex-
pression for the differential scattering efficiency is obtained.
Assuming that the optical and acoustic waves are monochromatic
the scattered power is given as a sum of contributions from the
spatial Fourier components of the scattering fluctuation. The
anisotropic Bragg equations appropriate to a phase-matched scat-
tering kinematics are derived, and the depletion of the scattered
intensity due to an imperfect phase match is calculated.

The interaction of the conduction electrons and the acoustic
phonons is dominated by the piezoelectric coupling and the de-
formation potential coupling. Assuming the coupling to be weak
the phonon-induced perturbations of the dielectric constant aris-
ing from the free-carrier screened indirect photoelastic effect
and from the free-carrier density modulation are evaluated in
terms of the self-consistent predominantly longitudinal electro-
static field accompanying the acoustic wave. The self-consistent
field is in turn expressed by means of the effective frequency-
and wave vector-dependent ac conductivity tensor?eff(Q, ﬁ ),
and a Boltzmann-equation calculation of ?eff(Q’ K) is outlined.

A detailed treatment of the scattering from an exponentially de-
caying {or growing ) acoustic wave, described guantum mecha-
nically by the phonon occupation numbers, is given.

Finally, based on an analysis of the vectorial acoustic disper-
sion of the Brillouin-scattering efficiency some possibilities of
determining ‘E‘eﬁ((z, ?()) from phase-matched Brillouin-scattering

measurements are discussed.
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II. GREEN'S-FUNCTION FORMALISM

In this section we present a formal description of the in-
elastic scattering of a monochromatic optical wave by a single-
frequency fluctuation in the dielectric constant of a semiconduct-
ing crystal.

The unperturbed optical wave propagation in a direction
given by the unit wave vector % can be determined by solving the
eigenvalue problem

< A A >0 _ 1 > 2@
ss)°* e’ —_— € e { 1)

(1" r 4
QP)Z

(n

«
where 1 is the unit tensor. In a conducting crystal the complex

dielectric tensor takes the form

>
g (w)
& 1 0
? (w) =Tl ()i —— (2)
€ g
where?j’(w ) is the dielectric tensor of the lattice, and‘t?0 (w)is

the electrical conductivity at the optical frequency w/{27). In an
absorbing crystal the eigenvalue problem of Eq. ( 1) leads to
solutions in form of plane, damped, elliptically polarized waves
described by complex field eigenvectors A (g, w ) and complex

refractive indices nEP(/s\, w) = ng +in.?, =1, 2.

1
For a first-order scattering process conservation of energy

implies

w,=w, -Q (3)
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where W, Wy, and (! are the angular frequencies of the incident
and diffracted photons and the scattering fluctuation. The plus
sign corresponds to an anti-Stokes process and the minus sign

to a Stokes process. For phonon-induced scattering one has w =

The amount of electromagnetic radiation generated by the
Y
Fourier component & P( -13, w ) of a nonlinear driving polarization
can be obtained by solving the inhomogeneous time-independent

wave equation for the diffracted field ( Ed(?’ w))

-

2T, w) - Ed(;’,w)=

[ 1
{(—PET-LTC e} By Rur=— B, (4)
w €
0

.é
whereV is the gradient operator. Forrmally the solution of Eq. (4)
is

Ed(¥,w)= l { G2, 2 6 B(T,w)dT ,  (5)
g 3,
where the integration extends over the interaction region. The
dyadic Green's function which is the reciprocal of a differential
operator can be found by a Fourier transform with respect to

space. Introducing the complex vector quantity k= ( kR -I‘ikI )5

one finds [ 1,2 ]

o0

df?R
P - - -
G(R)= | 1(w,k)exp(iﬁR'R)———-~, (6)
Lim® -0 (2nm)°

I

- 00
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-2 . & >
with R = T - '. The reciprocal of the dyadic @ (w, k) can be ex-
pressed in terms of the eigenvectors and eigenvalues for the un-

perturbed wave propagation. From a decomposition into eigen-

(2]

modes follows

& Ter_éq)(nlp)z
-1 R 2
Qa _sm,k)— (—) z
limk —0 c ®=1,2 w ) W
1 2 2 r 2 2 . 2
kg - (=) La)” -(a))7]-23(=)"nf n]

C <

(7)

In Eq. { 7 ) a term containing the eigenvector correspond-
ing to the nonpropagating mode (n3 = °0) has been omitted since
it does not contribute to the Green's function in the asymptotic
limit |R[ - oo,

In the following the treatment is limited to semiconducting
crystals and it is assumed that the damping of the optical wave
can be neglected. Furthermore, effects arising from the free-~
carrier contribution to the Green's function [ T and resonance
effects near the intrinsic absorption edge [ 3] will not be con-
sidered.

Let us consider the inelastic scattering of a photon from the
eigenstate 9, ?ce into the state @, I{"c.p. For a plane, undamped

linearly polarized wave the electric field is given by

=
B =B (u, K )exp [ i(R°-F-w)], (8)

"
where the wave vector k

>
EG

li?el lgi and the field eigenvector

2026 . ] .
={E°l 7 are equal quantities. In the far-field approxima-

tion the Green's-function formalism results in the following
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ratio between the scattered power per unit solid angle around the
direction of observation ( p? ) and the power in the incident pa-

rallel beam ( P° )

aP¥/an T D S A IS
= ) — (9)
p° dme x@nen{kcoséecos 5% A
where the tensor
1
TOe = exp [ i(R° -'ﬁ”)-?']é?r(?,md?'. (10)
\4
2

In Eq. ( 10 ) the spatial fluctuation in the relative dielectric tensor,
)
& (?r(?, (1), has been introduced. The unit field eigenvectors | e,
A @ - brd ¢
e ), the Gaussian curvature of the w(k )-surface (¥ '), and the
refractive indices ( ne, n? ) occurring in Eq. ( 9 ) are those
. . . 30 3

associated with the propagation vectors k= and k', The angular
deviations between these wave vectors and their related Poynting
vectors have been denoted by & o and 8 ¥, The cross sectional
area of the incident light beam is A, and the scattering volume
is V.

Let us decompose 6‘5;(?, (2 ) into its spatial Fourier compo-

nents, i.e.,
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-
where the sum is over the discrete set of K allowed when perio-
dic boundary conditions are introduced over a normalization

volume VS. Combining Eqs. ( 9 ) and ( 11 ) one obtains

’ _Z.QQP-é?r(Q,R')-’ée Cglz
apP¥/a v 5, 'K v,
= { ) (—)" .,
F‘6 dme qu’)ne n" cos éa cos 67 Vs
(12)
with

1
- D
Cy = g exp[i(ﬁefx-k‘*)-?]d?. {13)

IIT. PHASE-MATCHED SCATTERING KINEMATICS

It follows from Eg. ( 13 ) that an appreciable amount of
scattered radiation occurs only in directions given by the phase-

matching condition
3 —
R =REEIR. (14)

In a particle picture this relation expresses the conservation of
pseudomomentum in the scattering process. The selection rule

of Eg. ( 14 ) leads to the anisotropic Bragg equations ({i<<uw.) [4]

N vi
SR — {f+ a2 - (n®)2 (b, (s
2n v ?\(Z)f

and
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A V‘2
P 0 P 9 .2 w2
sin @Y = f - [{n )" -(n") ] R (16)
) 2
2Zn Vp )\Of

which allow wus via the scattering geometry to select the differ-
ent (1, ﬁ-components of the dielectric fluctuation. The aniso-
tropic Bragg angles have been denoted by CPe and ¥, the vacuum
wavelength of the incident light by )\0, and the phase velocity of
the 2, —Iz—mode by Vp = VP(Q, 2 ). The frequency of the scatter-
ing component is f. In optically isotropic solids Eqs. ( 15 } and
(16 ) are reduced to the normal Bragg law.

If the scattering volume is a rectangular parallellepiped
(v= mL, ) one obtains for a scattering process where the degree

! ) . . =2 _20+2 20
of mismatch in the wave vectors is given by Q =k - K -k

3
Cg= 1 ———F—, (17)

-
apart from a phase factor which can be absorbed in 6?1_ (G, K.
Thus, if the light is scattered from a single mode the intensity

will be proportional to \CI—{* |2.

IV. PHONON-INDUCED PERTURBATION OF THE
DIELECTRIC TENSOR

In the following the perturbations in the optical dielectric

tensor caused by the spatial Fourier components of an acoustic
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disturbance are discussed. To describe the acoustic phonon mode
we introduce the time-dependent atomic displacement vector
given by

-3
3“=ug((;,'ﬁ)%“exp(u{-}’) ) (18)

>
where u% (¢;, K) is the amplitude of the Fourier component and
fi* is a unit vector in the direction of polarization of the mode.
The index 1 labels the different branches in the phonon disper-
sion relation connecting the angular frequency (. and the phonon
> A A

wave vector K = |KI|X.

In a piezoelectric semiconductor the phonon-induced fluctua-
tions in the dielectric tensor can be decomposed into

D “51 «>FC

¢ + 6 ¢ + ¢ . (19)
r T r

r

Lol
& =45 e

The first term arising from the fluctuation in the strain tensor
and the mean rotation tensor gives the direct photoelastic effect.
The second term represents the free-carrier screened indirect
photoelastic effect, that is, the succession of the free-carrier
screened piezoelectric effect and the electrooptic effect. The
third term describes the contribution from the phonon-induced

free-carrier density modulation.

A. Direct photoelastic effect

For small strains, the contribution to the inverse dielectric
tensor arising from the direct photoelastic effect can be ex-
pressed as a linear function of the symmetric and antisymmetric

combination of displacement gradients, i.e. [ > J
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(é??)’1=% 35 (w) - [Vu-i- 2]+59%(w)- W2 -v2], (20)

where the first term gives the Pockel contribution to the direct

photoelastic effect and the second term gives the rotational con-

tribution. The transpose of the tensor ¥ has been denoted by

35 . S . - .

Yu. The photoelastic tensor p~ is symmetric upon interchange
" T <as .

of the "acoustic'" indices, whereas p , which can be calculated

from the optical dielectric tensor, is antisymmetric in these

indices.

When Eq. ( 20 ) holds, one obtains from the direct photo-

elastic effect the contribution[ 6-9 ]
>
60 (0, K) = -iK® (w) - Blo) - BT edd (0, k), (21)

to the Fourier amplitude of the fluctuation of the dielectric
tensor. The single photoelastic tensor TBlw) given by plw) =

€«»as (w )

p (w) +p is neither symmetric nor antisymmetric in

the'acoustic!" indices.

B. Screened indirect photoelastic effect

An acoustic wave propagating through a piezoelectric semi-
conductor will be accompanied by a predominantly longitudinal
self -consistent electrostatic field arising from the piezoelectric
polarization screened by the free carriers. This self-consistent
field, ?sc = ,f?scl ')‘4., causes via the linear electrooptic effect a

[ 1, 10 ]

fluctuation in the inverse dielectric tensor given by
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- >
(S T =Py T, (22)
r sC

where?(w ) is the electrooptic tensor.

The interaction of the free carriers and the acoustic phonons
originates mainly from the piezoelectric coupling and the deform-
ation potential coupling. At low frequencies the first coupling
mechanism tends to dominate whereas at high frequencies the
second is the more important, even in strong piezoelectric
crystals.i“ 1,1z ]

The critical quantity in determining the free-carrier screen-
ing of the electron-phonon interaction, and thus the self-con-
sistent field, is the effective frequency- and wave vector-de-

L 12 ]

_)
pendent ac conductivity tensor‘(?e (¢, K) ( see section VII)

ff
Combining the constitutive equation for the phonon-induced

current, the Maxwell equations, the continuity equation, and
the adiabatic piezoelectric equation of state, one obtains for

the Fourier component of the self-consistent field the ex-

pression

I =¥ U
v (G, K) q
- >
F_(0,K)=iKd” (o, R
scC [e] 3
(G, K)
~ oL eff ~
we [ () +i <
@)
(23)
< -
where = is the deformation potential tensor, € is the piezo-

<
electric tensor, € L(Q ) is the low-frequency dielectric tensor

5
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of the lattice, and q is the numerical magnitude of the electron
charge.
It is seen that the screening of the piezoelectric field is
contained in the complex quantity
RN Il I
141 . (24 )

AT, A
n e - N

Combining Eqs. ( 22 ) and ( 23 ) one finds that the con-
—
tribution to é?r (2, K) from the free-carrier screened in-

direct photoelastic effect can be written

6‘?Sr1(gz, R)= iKW (0, ‘ﬁ)?r(m)-‘?(w)-ﬁ-‘e’r(w)x

A ~
% oeff(Q,K) n
A~
-T@Q) M - X-E(0) A
qV (Q, K)
(25)
‘E’eﬁ(n,k’)
”~
Rt {1 W A G

9]
In the limit of zero conductivity Eq. (25) is reduced to the well

[2]

known result

A HALLA
ol > N - A e He " T A
§€A(Q, K)=iKu® (w)*r-n-¢ (w) ———— (26)
r o r r A el ~

€ () n

C. Free-carrier density modulation

The buncing of the free carriers induced by the acoustic
phonons via the piezoelectric coupling and the deformation po-

tential coupling gives rise to a modulation of the optical dielec-
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tric constant. For a nondegenerate solid state plasma one ob-

BE

tains in the low wave vector limitL

.
qn, (0, K)
.
50, K) =i ——— (), (27)
GOUJ

=
where n, (¢, K)is the Fourier amplitude of the free-carrier

density modulation, and b’ (w ) is the free-carrier mobility ten-
sor at the optical frequency. For a collision dominated plasma
{(w Tp << 1, T _ being the electron momentum relaxation time)Eq.

{27 ) takes the form[ 13, 14 ]

—
5 (2, K)=1i , wT << 1 (28)
r P

where ng is the equilibrium free-carrier density, and % is the

dc conductivity tensor. For a collisionless plasma (W 1p>> 1)

one obtains [13’ 14 ]

—’
n, (2, K)

&
N'UNI

5% (0, R) = - LWt > (29)
r P

w T

where wp is a generalization of the squared angular plasma fre-
quency to the anisotropic case.

The free-carrier density modulation n, (<, iZ) can be ex-
pressed in terms of the self-consistent field ( Eq. ( 23 ) ) by
combining one of the Maxwell equations, the continuity equa-

tion, and the constitutive equation for the ac current. As a
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result of such a calculation one obtains from the free-carrier

density wave the contribution

- A
‘J’(w) Q-?eff(Q,K)'x
- -
6?FC((2,K)=iKui(§2,K) — — x
r e wV (3, R) 7 0, K)
0 P A en], ef A
e[ e () 1-x
Q
A e s e A o1, AN ‘:P N Al
{ix-e(Q)-n %+ = X € (2 )eun=E(t)em }
v (0,K
a vy )
(30)

to the Fourier amplitude of the dielectric fluctuation.

V. EXPONENTIALLY DECAYING LATTICE WAVE

An elastic wave propagating through a crystal will be
damped or amplified due to its interaction with its "'sur-
roundings''. If the interaction is weak the damping ( or ampli~
fication ) becomes exponential. The most important contribu-
tions to the frequency- and wave vector-dependent sound attenu-
ation coefficient I‘M(Q, g) arise from the free-carrier-phonon

1~ -
el-ph ), from the elastic anharmonicity (th ph ),

interaction (T
from the Brillouin-scattering process (I‘Br ), from boundary

. B . e
scattering {(I' 7 ), and from impurities or crystal defects ( Tl ).

Thus,

Y _ -
r¥(q,K)y=rel-Ph  pph-ph  Br B T (31)
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In a piezoelectric semiconductor the main contribution to
~el-ph . - . . .
T is due to the piezoelectric coupling and the deformation
potential coupling. It is well known that a stimulated phonon

c . ~el-ph . .
emission occurs, 1l.€., L < 0 for the piezoelectrically ac-
tive modes if the component of the free~-carrier drift velocity

A
in the direction X, by application of a sufficiently high external
electric field, exceeds the phase velocity of sound in this direc-
tion. In a certain region of phonon frequencies this can lead to a
) . - LTy 11, 1 .
net gain of the acoustic wave (1 o, Ky< o) [ 15 J Expli-

T el-ph

cit expressions for is given in section VI.

A general description of T ph-ph for arbitrary Tgh( T ph
being the phonon lifetime ) has been developed on basis of a
Green's -function method. Relatively simple results can be ob-
tained in the limiting cases (1 7 ih << 1 { Akhieser loss } and

T §h>> 1 { Landau-Rumer loss ). For the Akhieser mechanism

it is assumed that the acoustic wave distorts the lattice leading

to a relaxation determined by the third-order elastic constants.

According to the Akhieser theory the lattice loss will be propor-
; -2 ~ _ph . .
tional to &, For me >> 1 the attenuation of transverse acoustic

waves is determined by three-phonon scattering processes,
while for longitudinal waves four-phonon processes are appro-
priate. For longitudinal modes uncertainty broadening has to
be considered since scattering can occur only with phonons of
larger sound velocity. At not too low temperatures the L.andau-

Rumer loss will be proportioral to (.
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In this work we shall neglect the damping of the optical and
acoustical waves arising from the Brillouin-scattering process
and only notice that this damping must be taken into account
when dealing with intense scattering effects.

For low frequencies or small sample dimensions the bound-
ary scattering can be important especially for off-axis waves.

At very low temperatures or at very high concentrations of
impurities or crystal defects, TI can play a significant role as
a nonelectronic phonon scattering mechanism. For impurity
scattering TI is proportional to Q4, whereas it for dislocations
is proportional to Q.

Resolving the time-independent part of the atomic displace-

ment for an exponentially decaying { or growing ) wave

2w =

u? (250, 0) 0  exp [ (KM -T" )R- 77, (32)

v
0
after its spatial Fourier components ( denoted by -(i) ) the squared

Fourier amplitudes are given by

AK‘;ai I‘i“'ai
sinz(——-)+sinh2( )
" >.(2 294 W, 2 3 2 2 _riua
)uO(Q,q)] = vsluo(r=o,ml T e
i=1 bKYa, , Tla
( )+ )
2 2
(33)

2uo_ 2y > . . .
where AK™ = K" - g. In the derivation of Eq. ( 33 ) it has been

assumed that the volume of the solid occupied by the acoustic

wave is a rectangular parallellepiped, i.e., V=1 a; ( Integra-
i
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tion region ( 0 ] a; } ). If the integration by choice extends over
a;, a; "
( —7—-{ - ) the factor exp ( -Ti ai) vanishes.
To obtain a quantum mechanical description of the lattice
vibrations one must make the following replacement for the

squared Fourier amplitude of the displacement

+

no NG
1u‘~5m,a>|2a}<nt1|az|n>|2:__.i_ , (34)

ZpOQZ

where the plus sign corresponds to a phonon creation(Stokes
component)and the minus sign to a phonon annihilation ( anti-

Stokes component ). The occupation number for phonons of wave
+

S . o B . (S St B oo
vector is N5, and N is defined by N =NL+1Tand N =
4 i q [y iy q
L
N .
g

Combining Egs. { 33 ) and ( 34 ) the occupation number for

_*
the mode 'c'i =K, i.e., N% can be expressed in terms of the

squared amplitude |u%) (?=0,0)l 2 of the damped sound wave.

Thus,
TVa
2 ( 1 1 )
2 sinh
+ ZpOQJ 2 2 3 -THa,
IS ve P (P=0,0) = e ' 1
g i s =0 i=1
o Tiulal
( )2
2
(35)

VI. ELECTRON-PHONON INTERACTION

In a piezoelectric crystal, the time-independent part of the

equation of motion for the acoustic lattice vibrations is given
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by [ 1]

CF (Do), (36)

0y .2
A)— sC

S
-pomz?l“( ?,0)= 9T 384 (2,

where“® is the elastic stiffness tensor for constant electric field,
and Po is the mass density of the ion background. For any di-
rection of the acoustic wave vector, specified by %, the unit

v

polarization vectors T¥ can be determined approximately by

solving the pure elastic eigenvalue problem

RS (37)
Below we shall give explicit expressions for the amplitude
attenuation coefficient, Tel-ph(Q, K ), and the acoustic phase ve-

-
locity, VP {1, K) in the weak coupling approximation, i.e., for

Q/VP(Q,R’)» rel-ph g, [ 10, 13 ]
Introducing the anisotropic electromechanical coupling con-
stant

o, o

o

A Ay A
A TN

A A &S s ~ o~ -ﬁ.—
[(ﬁ'%“'?'n-%”)(n-eL-ft)]E (ceL)‘

and the generalizations to the anisotropic case of the effective

C e oo .o e~
ac conductivity S A T the dc conductivity %
ol = ~ . . . ~ ~ L
Koo GO * %, the dielectric relaxation frequency Oc = UO/e , and

. T _s 2~
the deformation potential ® =x * E + 1" the anisotropic phase

velocity is given by ( ’f{z << 1)
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~ 2 g )
" N c 3 K Y eff Lt: -1
VP(P,K)=(—)? 1+ Re(1 +i )
pO 2 CIO ¥
~2 5
K H/q eff
- — —— Re ( et I (39)
2 € eff xZC
T+ _
00 ¥
and the amplitude attenuation coefficient as
~2 =~
K ¥ = 1
relPh Ry = - { fa x
~ 5 ~ i
2 (eley) © (Tpy)®
1 4 o
eff eff c
Im { — —— ) -Im (1+i— ) . (40)
O s (,C 00 (1
1+ 1 —)
% 9]

N
VII. CONDUCTIVITY TENSOR T(0, K)

A semiclassical approach to the calculation of the ac con-
ductivity tensor uses the Boltzmann equation to determine the
electron distribution function f(?, 3, t). For electrons inter-
acting with an acoustic wave ({2, R) in the presence of an ex-

-
ternal dc electric field F, the Boltzmann equation takes the form[ ! 61

0
-
N Bfo(v)
af 3f q N ar oV mmy s
TV s T (Bt Fogy) '
2t 37 m 3 el
e (E)

( 471)
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where the effective electric field acting on the free electrons in

the presence of the acoustic wave can be written

—

1y

AR ut (T 0) . (42)

eff =~ Fsc

1
q
The effective mass of the electron, assumed to be isotropic, has
been denoted by m*, and the energy-dependent electron momen-
tum relaxation time by 'rpel(E ). Treating the electrons as obey-
ing Boltzmann statistics the equilibrium distribution function
f0 (¥) is the well known Boltzmann distribution. The term
n, 3 fO/a n0 arises from the fact that the scattering is local.

To determine the electron distribution function, f(?, ?, t)

is decomposed as follows

f=f, (v)+glv)exp[i{K r-Qt)] . (43)
The first term represents the electron distribution function in
the presence of the dc field but in the absence of the acoustic
wave. Solving the dc part of Eq. ( 41 ) one finds to first order
in the drift velocity ¥, = ( - ngl(E Jm* VB that £, =1 (F-7))
i.e. a displaced Boltzmann distribution. Neglecting the non-
linear term (q/m"*)}?eff *3 g{v)/? "V, and taking the direction
of the dc field to be along the z-axis the ac part of Eq. ( 41)
turns into a simple inhomogenous first-order differential equa-~
tion in g (3).

The phonon-induced current is given by

(44)

oo
“»el-ph _ 3 4Dy oy &> - .2
J —-qug(v)dv—Ueff(u,i\}) Feff )
oo
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where

(@, K= [ TR, K17 -9, K. (45)

The detailed calculation of the phonon-induced current shows that

-
the conductivity tensor @ (0, K ) is given by[ 1]

oy 1
) Yz S (E) 2 ot
«> by 4 > P 4 de -a -
c(h,K)=1\ v —_—— e dv_'rdv, {(4606)
* fope z
vd m 3 Vv
- 00 - 00

<>
and the tensor R,arising from the diffusion of the nonuniformly

distributed free carriers,by

[ ~] v

Z
f
o 3 0/BnO . .
R(G, K)= i —— e dv '¥»dv , (47)
v,V (0, K z
a'p
- 0o — oo
where
\'2
z T;l(E)
-1
a= [1(B-T-0)+(HE))'] ———— dv.". (438)
P N z
v ! d
zZ

VIII. SCATTERING EFFICIENCY

The scattering from an exponentially decaying ( or growing )
acoustic wave { (, 2, 1"} of polarization type y between the light
polarization states © and ¢ can be obtained by combining the re-
sults from sections II - VIL. Thus, for rectangular volumes of
solids and of scattering one obtains for the ratio of scattered

to incident powers Zi’wi (dPQP/dQ )/P9
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Ne’q) 3
© 5 MUL (<, K) VZ a

) — | (2=0)1%x
4me )(anen(Pcos(‘ﬁecos6CP A Vp(Q’K)

20790, R) =

Q.L. I'.a.
1 1 11
sin( ) sinh { )

3 2 2 2 -Tiai
7 [ 1% e . { 49)
i=1 Q.L. T a

1 1 1

{ ) ( )
2 2

—~ —~ 2;' ~ 3 ”IJ e
~6, ¢ O PV eff [ eff . (ie & 2
My 0, K) =R - S (@ -~ ) - — i3+ -,
€ v € WV € v
q p 0 p q
( 50)

with the abbreviations 'f)’ :/e\tp - (w)- ? ¥

€«
- ¢ (w) ,
ARt

T

£~ A «>

~
-

) AB ~ _AYp &> A©
w)-r-n~€r(w)~e ,andp{(w)=e’ - wWlw)-e .

Expressed in terms of the occupation number N%the scatter -

ing efficiency zg'q’ takes the form

+
Mo no NES
6, - w 2 o \'% 2 1 K
29 %, R) = ) : (— P — X
4me )(q)nentpcoséacoséQp Vs A ZpOVIZ)
QiLi
sinz( )
3
it (51)
i=1 QiL1
2
( )
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1X. ACOUSTIC DISPERSION OF THE SCATTERING EFFICIENCY

It appears from the preceeding analysis that the scattering ef-
B
ficiency ZLL’QF generally is a nontrivial function of the acoustic
wave vector, as well as of the incident and scattered optical

wave vectors. A quantitative study of the first-order changes of

_— -
ZS’G’ around a selected wave vector K is based on the vectorial
acoustic dispersion of the scattering efficiency,??i’q],defined by
€R <8,
28,9 W
o (52)
2%, @
"
writing Eq. { 52) on the form
28, ¢ =
AR —Vput (53)
u 8
709 act
"

it is obvious that the vectorial properties of the dispersion effects

=Y
can be obtained by calculating the acoustic group velocity Vg =
= ! 2 . . . .

VI‘E&E of the mode u, K. By introducing spherical coordinates

(K, @, % ) the frequency dispersion can be written on the form

] <.-1zi"P 2 v
~ =5 ]
b 9,y o p QK
o’ df:

and the angular dispersion in a direction given by the unit vector

R AR, - %, =0 )as foll
tht )(-K— as toliows
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: dzﬁ’q’ 2VE R vy
%, 289 %, %y + ].(55)
u s8,0 da” 36 siné 30
‘!“L

The set of mutually perpendicular unit vectors appropriate to

A A ~
spherical coordinates have been denoted by % L and %

K’ o}

In strong piezoelectric semiconductors like Zn0 and CdS
angular dispersion effects can be significant because of the an-
gular dispersion of the acoustic wave propagation which is in-
duced by elastic anisotropies and by phonon-conduction electron
interaction [ 17, 18 ]

The basic and numerically appreciable difference between

the factor ( dZi’q) /dQ)‘)/Ef’EPin nonconducting and semicon-

ducting crystals is contained in the dispersion of the matrix ele-

ment ﬁiﬂP’ i.e. in[ 19]

dﬁe l(p
1 i}
, (56)
VAl aqt
W
and in the frequency dispersion of the damping coefficient I«el-ph.

X. DETERMINATION OF ELECTRONIC TRANSPORT PROPERTIES

In this section some possibilities of determining?eff(ﬁ,_ﬁ)
from phase-matched Brillouin-scattering measurements are out-
lined.

In the general case, the matrix element in Eq. (50 )is

composed of contributions from the direct photoelastic effect,
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the screened indirect photoelastic effect, and from the free-
carrier density wave. However, by using linearly polarized in-
cident light it is in many cases possible because of (i) different
light polarization changes, (ii) anisotropy effects, or (iii) dif-
ferent light frequency dependence to separate the scattering from
the three effects.

From the Brillouin-scattering measurements one determines

~R
5]

in general only a combination of the real ( off

) and imaginary
(gelff ) part of the appropriate effective ac conductivity. However,
since the real and imaginary part of the conductivity are linked via
the wave vector-dependent Kramers-Kronig relations a complete
determination of geff(i'z,l?) can in principle be obtained. When

spatial dispersion effects can be neglected the Kramers-Kronig

relations take the simple form

(s o)

|~I Y
R 2 Q1o g (an)
T )= -—P \—0 ———— aqq' , (57)
eff - 2 >
. 2 o
0 G Q')
and
2 E;Sff (o)
3 oy = p aa' ( 58)
eff > 2
QT o-(an)

o

where P denotes the principal value of the integrals.

A. Dominating conduction-electron scattering

In a scattering geometry where the selection rule allows the

scattering from the free-carrier density wave it appears from
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Eq. { 50 ) that this scattering dominates at long optical wavelengths

since P, T and | are almost independent of frequency in this range.

. e N _ N, N~ e .
With the definitions ¢~ = R + io; (Oeff/co )(QC/L ) one obtains

from Eqgs. ( 49) and ( 50 )

~ 5 Rl
Agm, = ; ( 59)
l'é’N|2+2'&'i\I-1

where the dispersion of the phase velocity and of the damping
- . ~ oy . .
coefficient induced by geff(Q’ K ) are contained in the Q, K—de—
~ -
pendent quantity AO (¢, K). The above equation combined with
the Kramers-Kronig relations in principle enable one to eva-
~ -
luate the complex conductivity ceff(Q’ K).
If the damping of the acoustic wave can be neglected, i.e.,

~

for Ti a; ~ 0, the expression for AO takes a form

"
~ > VP 4 (41'TC)2A)((‘Onen(‘ocoséecoséQP
AO(Q,K)=( ) x
2 ~ 2
g J (2=0)] 2 V3] T ()
]
s ( 60)
~ ~L =
[ Ge =
2
(—)P% + (—Z—)
v
€ 0 q p

~ -2
which is independent of oeff(ﬂ, K).
If the scattering takes place from a thermal-equilibrium

distribution of phonons one has
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hi 1

exp| (he MikyT )| -1 20 (2 y2
0

where kB is the Boltzmann constant. For microwave phonons at

room temperature Eg. ( 61) simplifies to ]up'] =k T/(Zpof V ).

B. Dominating piezoelectric coupling

In the following we consider, under the assumption that I' =0,
a few special cases.

When the scattering from the three effects can be separated
a measurement of the ratio between the scattering efficiency from

the free carriers ( T } and from the screened indirect effect

FC

( T ) determines the transport properties via an equation of

uSI

the form

9,
N ~ Zu,FC
= 2
lgeffl By 5 ’ (e2)
SRR
By SI

where the explicit expression for ﬁéO’ which apart from a small
dispersion of v‘; is independent of T .., can be obtained easily
from Eqs. ( 49 } and ( 50 ). If the contributions from SI and FC
are separated by the polarization selection rule,scattering with
an incident 1ight beam of angular frequency w simply implies that
By (0, R =1715/ e qu vE )%

Measurements of the scattering efficiency arising from the
screened indirect photoelastic effect allow us to evaluated via

eff

the equation
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~Ny 2 ~N ~ o] @
+ - :
1+ |37 - 257 = D 24 (63)

where the explicit conductivity-independent expression for BO(Q,E)

can be obtained from Eqgs. ( 49 ) and ( 50).
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